STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

AFDELING ZUIVERE WISKUNDE

ZW 1963-005

Topological semigroups II

by

Aïda Paalman - de Miranda

May 1963

CHAPTER II

Semigroups with zero and identity.

§ 1. Semigroups with zero.

Let S be a mob with O, and a an element of S. If $a^n \rightarrow 0$, i.e. if for every neighbourhood U of O there exists an integer n_0 , such that $a^n \in U$ if $n \geqslant n_0$, then a is termed a nilpotent element.

We denote by N the set of all nilpotent elements of S. An ideal (right, left) A of S with the property $A^n \rightarrow 0$ is called a nilpotent ideal.

A nil-ideal A is an ideal consisting entirely of nilpotent elements.

Then it is clear that every nilpotent ideal is a nil-ideal, and that the join of a family of (right, left) nilideals is again a (right, left) nilideal of S.

Example: Let S be the unit interval with the usual multiplication. Then I = [0,1] is an ideal consisting entirely of nilpotent elements.

I is not a nilpotent ideal, since $I^n = I$ for all n.

<u>Lemma 1:</u> Every right (left) nilideal of S is contained in some nilideal of S.

<u>Proof:</u> Let A be a right nilideal of S. Then SA is an ideal of S. Suppose $x = sa \in SA$, and let U be any neighbourhood of O. Then there exists a neighbourhood V of O such that $s \ V \ a \subset U$. As A is a right nilideal of S, $as \in A$, and $as \cap e V$ for n > n. Hence if m > n + 1 we have $(sa)^m = s(as)^{m-1} \ a \in s \ V \ a \subset U$. Therefore S A is a nilideal of S, and hence AUS A, is a nilideal of S containing A.

<u>Definition 1:</u> The join R of all nil-ideals of a mob S with zero is called the radical of S.

Lemma 1 implies that R is a nil-ideal, which contains every right and every left nilideal of S.

Hence R is the maximal right and the maximal left nil-ideal. If S = R i.e if S consists only of nilpotent elements, then S is called a nil - semigroup.

Let a \in S, then we shall denote by $\Gamma(a)$, the closure of the set $\left\{a^n\right\}_{n=1}^\infty$. $\Gamma(a)=\left\{a^n\right\}_{n=1}^\infty$

Lemma 2: Let S be a mob and let A be a compact part of S such that $Ax \in A$, with $\Gamma(x)$ compact. Then $\bigcap_{n=1}^{\infty} A x^n = Ae$, with $e=e^2 \in \Gamma(x)$.

Proof: Let $p \in \bigcap_{n=1}^{\infty} Ax^n$

Then $p = a_1 x = a_2 x^2 = \dots$.

Hence from §1 lemma 2 it follows that there is an element. $a \in \{a_i\}^-$ such that p = a e, where $e = e^2 \in \Gamma(x)$ (see §1 th. 4).

This implies $\bigcap_{n=1}^{\infty} A x^n \in A e$.

Now let $a_1 \in A \times K$. Then we can find a neighbourhood V of e such that $a_1 \lor \cap A \times K = \emptyset$.

But since $e \in \Gamma(x)$, there is a $K_0 > k$ such that $x \in V$ and hence $a_1 x \in K_0 \neq A x^k$.

This is a contradiction, since A x c A implies A x^k c A x^k . Hence A e c A x^k \Rightarrow $\bigcap_{n=1}^{\infty}$ A x^n = A e.

Theorem 1: Let S be an element - wise compact mob with zero (i.e for every a, Γ (a) is compact).

Then every (right, left) ideal of S is either a nil-ideal or contains non - zero idempotents.

<u>Proof:</u> Let a be a non-nilpotent element of the ideal A. Then the identity e of the group $D = \bigcap_{n=1}^{\infty} \{a^i\}_i \geqslant n\}^-$ is not equal to zero.

Furthermore a D \subseteq D, and a D \subseteq A D \subseteq A, since A is an ideal. Hence D \cap A. \neq \emptyset , so that D \subseteq A, since no group can properly contain an ideal. Thus e \subseteq A.

Theorem 2: Let e be a non-zero idempotent of the compact mob S with zero.

Then these are equivalent.

- 1) e S e \ N is a group
- 2) e is primitive
- 3) Se is a minimal non-nil left ideal
- 4) S e S is a minimal non-nil ideal
- 5) each idempotent of S e S is primitive.

<u>Proof:</u> $(1 \rightarrow 2)$: If e S e \ N is a group, then e is the only idempotent in e S e \ $\{0\}$, since no idempotent $\neq 0$, can be nilpotent.

Hence e is primitive

 $(2 \rightarrow 3)$: Let L be a non-nil left ideal LcS e.

Then by theorem 1 there is an idempotent $f \in L$, $f \neq 0$.

Since $f \in Se$, we have fe = f, and (ef)(ef) = ef.

Thus ef is an idempotent \neq 0 and ef \in eSe.

Hence since e is primitive ef = e.

This implies that ef = $e \in eL \subset L$. $\Longrightarrow L = Se$.

 $(3 \rightarrow 4)$ Let I be a non-nil ideal I \subset SeS.

Then there exists an idempotent $f \in I$ $f \neq 0$, and elements $a,b \in S$, such that aeb=f.

We can choose b such that bf = b.

Let g=bae. Then g²=baebae=bfae=g.

Furthermore $g\neq 0$, since otherwise 0=gb=baeb=bf=b.

Now g ∈ Se and g ∈ SfS.

Hence by (3) Se = Sg \subset SfS, and we conclude SeS=SfS=I.

 $(4 \rightarrow 5)$ Let f be a non-zero idempotent of SeS, and let $g=g^2\neq 0$ ϵ fSf.

Since $f,g \in SeS$, we have SgS=SfS=SeS and $f \in SgS$. Hence f=agb,

and we may assume ag = a, gb = b.

Since gf = fg = g, this implies afb = agfb = agb = f. Hence $f = a^ngb^n$.

It follows from §1 lemma 2 that there is an idempotent $g \in \Gamma(a) \in Sg$ and $b \in \Gamma(b)$ such that f = g gb'. We note that g g = g, hence g f = f = g g f = g, and f = g g g = f g = g.

(5 \Rightarrow 1) Since every idempotent in SeS is primitive, e is primitive and hence Se \equiv Lis a minimal non-nil left ideal.

Now let a ϵ eSe \setminus N, then a ϵ $\{$ Se \cap eS $\}$ \setminus N.

Since L is minimal. a = ea € La = L.

Hence there is $\overline{a} \in L$ such that $\overline{aa} = e$.

Let $e\overline{a} = a'$, then $a' \in eSe$ and a'a = e.

(aa')(aa') = aea' = aa'. Hence aa' is an idempotent and $aa' \in eSe \setminus N$. Since e is primitive aa' = e.

So we can find for every a ε eSe \setminus N an element a $\mid \varepsilon$ eSe such that aa \mid = e = a \mid a.

This implies that eSe \setminus N is a group, since a' $\not\in$ N. For if a' \in N, then $\bigcap_{n=1}^{\infty}$ S(a')ⁿ = S.0 = 0 by lemma 2. This is in contradiction with aa' = $a^2(a')^2 = a^n(a')^n = e$.

<u>Definition:</u> A mob S with zero is said to be an N-semigroup if its nilpotent elements form an open set.

Lemma 3: Let S be a mob with zero, and let $a \in S$.

If a^n is nilpotent for some $n \geqslant 0$, then a itself is a nilpotent element.

<u>Proof:</u> Let U be an arbitrary neighbourhood of O, then since $e^{\frac{1}{1}}O = O$, there is a neighbourhood V of O, such that $a^{\frac{1}{2}}V \subset U$ (j = 1, 2, ..., n). Since a^n is nilpotent there exists an integer $k_O \gg O$ such

that $(a^n)^k \in V$ for $k \gg k_0$.

Thus $a^{j}a^{nk} = a^{nk+j} \in U$. j = 1,2,...,n $k \gg k_o$. This implies that for $N \gg nk_o$ $a^N \in U$. Hence a is nilpotent.

Theorem 3: If a mob S with O has a neighbourhood U of O, which consists entirely of nilpotent elements, then S is an N-semigroup.

<u>Proof:</u> Let $p \in N$, then there is an n such that $p^n \in U$. Therefore there is a neighbourhood V of p, such that $V^n \subset U$. Hence every point of V^n is nilpotent. Lemma 3 then implies that $V \subset N$.

Theorem 4: A locally compact mob S with O having a neighbourhood U of O which contains no non-zero idempotents is an N-semigroup.

<u>Proof:</u> Since S is locally compact and Hausdorff. S is regular, and we can find a neighbourhood W of O, such that $\overline{W} \subset U$, and \overline{W} is compact.

The continuity of multiplication and the compactness of \overline{W} imply, that there is a neighbourhood V of O, with V \overline{W} \subset W

Hence $V^2 \in V$. $\overline{W} \in W$, and $V^n \in W$.

The set $A = \bigcup_{i=0}^{\infty} V^i$ is a mob contained in W.

Therefore \overline{A} is a compact mob contained in U.

Since \overline{A} contains no non-zero idempotents \overline{A} is a nil-semigroup (theorem 1).

Hence V consists entirely of nilpotent elements, and by theorem 3 S is an N-semigroup.

 $\underline{\text{Corollary:}}$ A locally compact semigroup with 0, which is not an N-semigroup contains a set of non-zero idempotents with clusterpoint 0.

Theorem 5: The radical of a compact N-semigroup is open.

Proof: Let a & R, then for every s & S sa & R & N.

Since N is open and S compact, there exists a neighbourhood V of a such that $SV \subset N$, $V \subset N$.

Since V ∪ SV is a left nil-ideal, V ∪ SV ⊂ R.

Hence V c R and R is open.

Theorem 6: Let S be a compact N-semigroup which is not a nil-semigroup.

Then any non-nilideal I of S contains a minimal non-nil ideal I*, such that I*/R* is completely simple, where R*= I* \cap R is the radical of I*.

 $\underline{\text{Proof:}}$ Since I is a non-nilideal of S, I contains non-zero idempotents.

Let $E^* = E - \{O\}$. Then E^* is closed, since N is open and E is closed.

Let $E_{\lambda} = E^* \cap Se_{\lambda} S_{\beta} e_{\lambda} \in E^* \cap I$.

Then E_{λ} is closed and non-empty.

Suppose E, is a minimal member of $\left\{\,E_{\,\lambda}\,\right\}$. $E_{\,\nu}$ exists since S is compact.

We shall now prove that e, is a primitive idempotent.

Suppose $0 \neq f = f^2 \epsilon e_{\mu} Se_{\nu} \Rightarrow f \epsilon I$. Then $SfS \subset Se_{\nu}S$.

Since E, is minimal;

E*n SfS = E*n Se, S. Hence e, = $s_1 f s_2$. with e, $s_1 = s_1$, $s_1 f = s_1$. $s_1^n f s_2^n = s_1^{n-1} s_1 f s_2 s_2^{n-1} = s_1^{n-1} f s_1 f s_2 s_2^{n-1} = s_1^{n-1} f e$, $s_2^{n-1} = s_1^{n-1} f s_1 f s_2 s_2^{n-1} = s_1^{n-1} f s_1 f s_2 f s_2^{n-1} = s_1^{n-1} f s_1 f s_2^{n-1} = s_1^{n-1} f s_1^{$

$$= s_1^{n-1} f s_2^{n-1}$$

Hence $s_1^n e_{\nu} s_2^n = e_{\nu}$.

Thus there is an idempotent $g \in \Gamma(s_1)$ and an element $s \in \Gamma(s_2)$ so that $g e_{\nu} s = e_{\nu}$.

We note that since $\Gamma(s_1) \in Sf^{p}$ gf = g.

Hence $e_{\nu} = ge_{\nu} = gfe_{\nu} = gf = g \implies f = e_{\nu}f = gf = g = e_{\nu}$.

Thus e_{ν} is a non-zero primitive idempotent.

Theorem 2 then implies that $Se_{\nu}S=I^{*}c$ I is a minimal non nil-ideal.

Now we shall prove that $R^* = I^* \cap R$.

Since $I^* \cap R$ is a nil-ideal of I^* we have $I^* \cap R \subset R^*$.

Furthermore SR*ScSI*ScI*.

If $SR^*S = I^*$, then $I^*SR^*SI^* = I^{*3} = I^*$, and so $I^* = I^*SR^*SI^*c I^*R^*I^*c R^*$. This contradicts the fact that I^* is a non nil-ideal.

Hence SR^*S is an ideal of S properly contained in I^* . This implies that SR^*S must be a nil-ideal i.e $SR^*S \subset R^* \Rightarrow R^*$ is a nil-ideal of $S \Rightarrow R^* \subset I^* \cap R$.

Since R* is a maximal proper ideal of I*, § 3 th.3 implies that I* / R* is completely simple.

Corollary: Let S be a compact mob with zero; then S contains a non-zero primitive idempotent if and only if there is a non-zero idempotent e with $(eSe) \setminus N$ closed.

<u>Proof:</u> If $e = e^2 \neq 0$, e primitive eSe \ N is a maximal subgroup. (th.2). On the other hand if (eSe) \ N is closed and $e \neq 0$, then eSe \ N is the set of nilpotent elements of eSe, and eSe \ N is open in eSe.

We conclude from theorem 6 that eSe contains a non-zero primitive idempotent. Hence so does S.

Theorem 7: Let e be a non-zero primitive idempotent of the compact mob S with zero. Then Se \ N and (Se) \ N are submobs and Se \ N is the disjoint union of the maximal groups eSe_{α} \ N where e_{α} runs over the non-zero idempotents of Se.

<u>Proof:</u> Suppose a,b \in Se \ N, then aⁿ,bⁿ \in Se \ N. Let ab \in N. Then since Se is a minimal non-nil left ideal, we know that Sa = Sb = Se \Rightarrow Saⁿ = Sbⁿ = Se. Hence Sab = Sb² = Se \Rightarrow S(ab)ⁿ = Se.

Thus Se = $\bigcap_{n} S(ab)^{n} = SO = O$ (lemma 2).

This is a contradiction with $e \neq 0$.

Suppose now a,b ∈ Se ∩ N and ab ∉ N.

Then $(ab)^2 \notin N$ and hence Sab = Se, since Se is a minimal non-nil left ideal.

Since a & Se, we have SacSe = Sab.

Hence Sac Sab c Sab c Sab c Sab c

But since $ab^n \in Se$, $Sab^n = Se$.

This implies that $Se = \bigcap_{n} Sab^{n} = Sa.0 = 0$, a contradiction.

Finally let $a \in Se \setminus N$. Then Sa = Se.

Choose an idempotent f in $\Gamma(a)$; then Sf = Se = Sa, and f is a right unit for Se.

Let D be the subgroup of S contained in $\Gamma(a)$. Then D is an ideal of $\Gamma(a)$ (§ 1 th.4). Hence $\Gamma(a)$ f cD. $\Rightarrow \Gamma(a) = D$ and $\Gamma(a)$ is a group. Thus Se \N is the union of groups.

For any $e_{\alpha} = e_{\alpha}^2 \neq 0$, $e_{\alpha} \in Se$, $Se_{\alpha} = Se$, so that e_{α} is primitive and $e_{\alpha}Se_{\alpha} \setminus N$ is a group.

Now the maximal group containing e_{α} is contained in $e_{\alpha}Se_{\alpha}$, moreover since any group which meets N must be zero, we conclude that $e_{\alpha}Se_{\alpha}\setminus N$ is a maximal group.

§ 2. <u>O - simple semigroups</u>.

As in Ch.1 § 3 we call a semigroup S simple if it does not contain a proper non-zero ideal.

By a 0-simple semigroup we mean a simple semigroup containing a zero element.

A completely O-simple semigroup is a completely simple semigroup with a zero element.

If S is completely O-simple then S contains a non-zero idempotent and this implies that S cannot be a nil-semigroup. On the other hand if S is not a nil-semigroup and S is O-simple, then every right or left nilideal of S is the zero ideal $\{0\}$, since $\{0\}$ and $\{0\}$ is contained in some nilideal of S.

We shall call a (left, right) ideal I of a mob S with zero O-minimal if $I \neq \{0\}$ and $\{0\}$ is the only (left, right) ideal of S properly contained in I.

Hence every minimal non-nil left ideal of a O-simple mob is a O-minimal left ideal.

Lemma 1: Let L be a O-minimal left ideal of a O-simple mob S and let a \in L \ O. Then Sa = L.

<u>Proof:</u> Since Sa is a left ideal of S contained in L, it follows that Sa = 0 or Sa = L.

If Sa = 0, then SaS = 0, in contradiction with SaS = S.

If S is an element-wise compact mob with zero, then every non-nil (left, right) ideal of S, contains a non-zero idempotent.

So in this case if L is a minimal non-nil left ideal of S, then there is an idempotent $e \in L$, with Se = L.

Lemma 2: Let L be a O-minimal left ideal of a O-simple mob S, and let $s \in S$. Then Ls is either $\{0\}$ or a O-minimal left ideal of S.

<u>Proof:</u> Assume Ls \neq 0. Evidently Ls is a left ideal of S. Now let L be a left ideal of S contained in Ls. L \subset Ls.

Let A be the set of all $a \in L$ with $as \in L_{0}$.

Then $As = L_0$, and $A \subset L$.

Furthermore SAs cSL cL and SAcSL cL.

Hence SACA and A is a left ideal of S.

From the minimality of L, either A = O or A = L, and we have corresponding L_0 = O or L_0 = Ls.

Theorem 1: Let S be a compact O-simple mob. Then S is the union of all minimal (i.e minimal non-nil) left ideals of S.

<u>Proof:</u> Since S is compact, S is completely 0-simple and hence contains a non-zero primitive idempotent e.

From $\S 1$ th.2 it then follows that Se is a minimal non-nil left ideal, and hence a O-minimal left ideal.

Now let A be the union of all the O-minimal left ideals of S. Clearly A is a left ideal of S and A \neq {O} .

Now we show that A is, also a right ideal.

Let a \in A and s \in S . Then a \in L for some 0-minimal left ideal L of S.

By lemma 2 Ls = 0 or Ls is a 0-minimal left ideal. Hence Ls \subset A and as \subset A.

Thus A is a non-zero ideal of S, whence A = S.

An analoguous result holds for O-minimal right ideals.

Lemma 3: Let L and R be 0-minimal left and right ideals of a 0-simple mob, such that $LR \neq 0$.

Then RL = R \(\cap L \) is a group with zero and the identity e of RL \(\{ O \} \) is a primitive idempotent of S.

<u>Proof:</u> Since LR is a non-zero ideal of S, we must have LR = S. Furthermore $RL \neq 0$, since $S = S^2 = LRLR$.

Now let a \in RL \ 0, then a \in L \ 0 and a \in R \ 0, and hence Sa \equiv L (lemma 1) , and aR = 0 or aR = R.

Since S = LR = SaR, it follows that $aR \neq 0$. Consequently aRL = RL.

In the same way we can prove that RLa = RL.

From this we conclude that RL is a group with zero.

Now let e be the identity of RL.

Then since R = eS and L = Se, we have $R \cap L = eS \cap Se = eSe$ and RL = eSSe = eSe.

Since eSe is a group with zero, e is primitive.

Theorem 2: Let S be a compact O-simple mob and let e and f be non-zero primitive idempotents of S.

Then the maximal subgroups H(e) and H(f) containing e and f respectively are topological isomorphic compact groups.

<u>Proof:</u> Since Se and Sf are 0-minimal left ideals and eS and fS 0-minimal right ideals (\S 1 th.2) it follows from lemma 3 that eSe \ $\{0\}$ and fSf \ $\{0\}$ are groups.

Since $H(e) \subset eSe \setminus \{0\}$ we have $H(e) = eSe \setminus \{0\}$, $H(f) = fSf \setminus \{0\}$. Now $eSSf \neq 0$, since $eSSfS = eS^2 = eS$.

Hence $eS \wedge Sf \neq 0$.

Let $a \neq 0 \in eS \cap Sf$. Then ea = a = af.

Since eS = aS and Sf = Sa (lemma 1), there exists a_1 and $a_2 \in S$ such that $e = aa_1$ $f = a_2a$.

Now let $b = fa_1e$, then $b \neq 0$ and

 $ab = afa_1e = aa_1e = ee = e$; $ba = fba = a_2aba = a_2ea = f$. Furthermore bS = fS, Sb = Se.

We now proof that the mappings φ : $x \to bxa$ and ψ : $y \to ayb$ are mutually inverse one-to-one mappings of H(e) and H(f) upon each other.

For let $x \in H(e)$ then $bxa \in bS \cap Sa = fS \cap SF = H(f) \cup \{0\}$. Simularly $y \in H(f)$ implies $ayb \in aS \cap Sb = eS \cap Se = H(e) \cup \{0\}$. And if $x \in H(e)$ a(bxa)b = exe = x.

 ϕ is an isomorphism since (bx_1a)(bx_2a)= bx_1ex_2a = bx_1x_2a. Since ϕ is continuous and one-to-one ϕ is topological.

Corollary: Let S be a compact O-simple mob.

Then S is the disjoint union of isomorphic compact groups H(e) and of sets \mathbb{A}_{α} with the property $\mathbb{A}_{\alpha}^2=0$.

<u>Corollary:</u> Let S be a commutative compact O-simple mob. Then S is a group with zero.

<u>Proof:</u> By lemma 3 we have $S^2 = S \cap S = S$ is a group with zero since S is both a O-minimal left and right ideal.

Theorem 3: Let J be a maximal proper ideal of the compact mob S.

Then the following are equivalent.

- 10) S-J is the disjoint union of groups.
- 2°) for each element of S-J, there exists a unit element
- 3°) a \in S-J implies $a^{2} \in$ S-J
- $4^{\rm O})$ J is a completely prime ideal
- 5°) S-J contains an idempotent, and the product of two idempotents of S-J lies in S-J.

Proof:

- (1) clearly inplies (2).
- (2) \rightarrow (3). Let a \in S-J and ax = xa = a.

Then ae = ea = a, with e = $e^2 \epsilon \Gamma(x)$ and $e \epsilon S-J$.

Hence since S-Ju $\{0\}$ = U H(e $_{\alpha}$)u UA $_{\alpha}$, we have a \in H(e) which implies $a^2 \in$ H(e) \Rightarrow $a^2 \in$ S-J.

 $(3) \rightarrow (4)$ Let a, b $\in S-J$ and suppose ab $\in J$.

Then $I = \{x \mid x \in S \quad xb \in J\}$ is a left ideal with $I \supset J$.

Now let $x \in I$, $xs \notin I$, then $xsb \notin J$, and hence $xsbxsb \notin J \Rightarrow bx \notin J \Rightarrow xb \notin J$ a contradiction.

Since I is an ideal containing J, we have $I = S \Longrightarrow b^2 \in J$ a contradiction.

- (4) \rightarrow (5) This follows from the fact that $J = J_0(S-e)$.
- (5) \rightarrow (1) Since e \in S-J, we have S\(\beta\)J completely simple and $S/J = U \ H(e_{\alpha}) \ U \ A_{\beta}$.

Now let a \neq 0 \in A $_{\beta}$, then a \in Se and a \in fS. with SefS = 0, or else it would follow from lemma 3 that a \in Se $_{\alpha}$ fS=H(e $_{\alpha}$) $_{\alpha}$ $_{\alpha}$ $_{\alpha}$ $_{\alpha}$ $_{\beta}$ $_{\alpha}$ $_{\alpha}$

From theorem 3 it follows that S-J is a group if and only S-J contains a unique idempotent.

§ 3. Connected semigroups

<u>Lemma 1</u>: If S is connected, then each minimal (left, right) ideal of S is connected.

Proof:

Let L be a minimal left ideal of S, then for any a ϵ L, Sa = L and hence L is connected.

If K is the minimal ideal of S, then K = SaS for each a ϵ K. Hence K = $\bigcup_{S_{\alpha} \in S} Sas_{\alpha}$: Since each Sas_{α} is connected and meets the connected set aaS it follows that K is connected.

Lemma 2: If S is connected, then each ideal of S is connected, provided S has a left or right unit.

Proof:

Let I be an ideal of S. Then $I = \bigcup_{x \in I} Sx$ if e is a left unit of S. Since each Sx meets aS with a eI we have that I is connected.

Example: Let $S = \{(x,y) \mid 0 \le x \le 1 \quad 0 \le y \le 1\}$. For (x_1,y_1) and $(x_2,y_2) \in S$ define the product $(x_1,y_1).(x_2,y_2)$ to be $(0,y_1y_2)$.

Then S is a compact connected commutative mob.

Let $I = \{(x,y) \mid x = 0,1 \quad 0 \le y \le 1\}$. And $I^* = \{(x,y) \mid 0 \le x \le \frac{1}{4} \quad \frac{3}{4} < x \le 1 \quad 0 \le y \le 1\}$.

Then I is a disconnected closed ideal, and I^* is a disconnected open ideal.

Theorem 1: If S is connected and I an ideal of S, then one and only one component of I is an ideal of S.

Proof:

Let $I^* = SI \cup IS$. Then I^* is connected and the component of I which contains I^* is an ideal of S.

Furthermore it is readily seen that this is the only component of S which is an ideal. This ideal will be called the component ideal of I.

Lemma 3: Let S be a compact connected mob and U a proper open subset of S with $J_{O}(U) \neq \emptyset$.

Let C_0 be the component ideal of $J_0(U)$, then C_0 intersects $\overline{U} \setminus U$.

Proof:

If $\overline{C}_{O} \cap \overline{U} \setminus U = \emptyset$, then $\overline{C}_{O} \subset U$, and since \overline{C}_{O} is an ideal, we have $\overline{C}_{O} \subset J_{O}(U)$ and $C_{O} = \overline{C}_{O}$.

Furthermore $J_O(U)$ is open and hence we can find an open set V, with $C_O \subset V \subset \overline{V} \subset J_O(U)$.

Since C_0 is a component of the compact set \overline{V} of the connected set S, we have $C_0 \cap \overline{V} \setminus V \neq \emptyset$ a contradiction.

Corollary 1:

Let S be a compact connected mob and F a closed subset of $S \setminus K$, with the property that if $F \cap I \neq \emptyset$, then $F \subset I$ for any ideal I of S.

Then if C is the component of S \ F which contains K then F = $\overline{C} \setminus C$.

Proof:

Since C is closed in SNF we have $\overline{C} \cap SNF = C \Rightarrow F \supset \overline{C} \setminus C$. Furthermore it follows from lemma 3 that if C_0 is the component ideal of J_0 (SNF), then $K \subset C_0$ and \overline{C}_0 intersects $\overline{SNF} \setminus SNF \subset F$

Hence $F \subset \overline{C} \subset \overline{C}$.

Since $F \cap C = \emptyset$ we have $F \subset \overline{C} \setminus C$.

If we take in corollary 1 F = H(e) with e ϵ EVK and if C is the component of SVH(e) which contains K , then H(e) = $\overline{\text{CVC}}$.

This follows immediately from corollary 1, since if H(e) I $\neq \emptyset$, then H(e) \subset I for any ideal I of S. Furthermore it follows that H(e) with $e \in E \setminus K$ can contain no innerpoints.

Theorem 2: Let S be a compact connected mob. If K is not the cartesian product of two non-degenerate connected sets, then

either K is a group or the multiplication in K is of type (a) or (b).

- (a) xy = x all $x, y \in S$
- (b) xy = y all $x, y \in S$.

Proof:

From Ch I. $\{2 \text{ lemma } 4 \text{ we know that } K = \{ \text{ SenE} \} \cdot \text{ eSe. } \{ \text{ eSnE} \} \quad \text{e } \epsilon \text{ EnK}$ Now let $K^* = \{ \text{ SenE} \} \times (\text{eSe}) \times (\text{eSnE}) \quad \text{and} \quad \phi : K^* \rightarrow K$ $\phi(x,y,z) = xyz.$

Then φ is clearly a continuous mapping of K^* onto K. Now let $x_1y_1z_1 = x_2y_2z_2$ with $x_1,x_2 \in Se \cap E$, $z_1,z_2 \in Se \cap E$, $y_1,y_2 \in Se$.

Then since x_1S and x_2S are minimal ideals with $x_1S \land x_2S \neq \emptyset$ we have $x_1x_2 = x_2$.

Furthermore since

 $x_1, x_2 \in Se$, $Se = Sx_1 = Sx_2 \Rightarrow x_1 = x_1, x_2 = x_2, ex_1 = ex_2 = e$. Hence $x_2 = x_1 x_2 = x_1 (ex_2) = x_1 = x_1$.

In the same way we can prove $z_1 = z_2$.

Since $x_1y_1z_1 = x_2y_2z_2$ we have $ex_1y_1z_1e = ex_2y_2z_2e \Rightarrow ey_1e = ey_2e \Rightarrow y_1 = y_2$.

Hence φ is one to one and K is homeomorphic to K *.

Since K is connected, each of eSe, SenE and eSnE must be connected.

Hence at least two of the factors must consist of single elements.

If eSnE = SenE = e, then K = eSe and hence a group.

If eSnE = eSe = e, then K = Se, and if x,yeK we have xy = (xe)(ye) = x(eye) = xe = x.

If SenE and eSe are both e, then the multiplication is of type (b).

Corollary: Let S be a compact connected mob. If K contains a cutpoint, then the multiplication in K is of type (a) or (b).

Proof:

If K contains a cutpoint, then K is not the cartesian product of two non-degenerate connected sets.

Hence from theorem 2 it follows that K is a group or the multiplication is of type (a) or (b).

Since a compact connected group, contains no cutpoints, the corollary follows.

<u>Definition 1:</u> A clan is a compact connected mob with a unit element.

<u>Lemma 4:</u> Let B be the solid unit ball in Euclidean n-space and let f be a map of B into itself, such that $|x - f(x)| < \frac{1}{2}$ for all $x \in B$. Then $0 \in f(B)$.

Proof:

Let $x=(x_1,\ldots,x_n)$ $f(x)=(f_1(x),\ldots,f_n(x)).$ We now consider the mapping $h(x)=(x_1,\ldots,x_n)-(f_1(x),\ldots,f_n(x)).$ This mapping transforms the ball $|x| \le \frac{1}{2}$ into itself and hence by Brouwers fixed point theorem there is a point x^* for which $h(x^*)=x^*.$

i.e.
$$(x_1^*, \dots, x_n^*) = (x_1^*, \dots, x_n^*) - (f_1(x^*), \dots, f_n(x^*))$$
 f(x) = 0.

Then H(u) is an open subset of S and is a Lie group.

Proof:

We identify U with Eⁿ and let $F_{\epsilon} = \{x \mid , |u-x| \leq \epsilon\}$.

Since the multiplication on F is uniformly continuous there is a δ such that $|x-xy|<\frac{\epsilon}{2}$, $|x-yx|<\frac{\epsilon}{2}$ whenever $|u-y|<\delta$. By lemma 4 $u \in F_{\epsilon}y$ and $u \in yF_{\epsilon}$, hence y has an inverse y^{-1} in F_{ϵ} and the mapping $y \to y^{-1}$ is continuous.

Therefore H(u) is a topological group, and since it contains an open set it must be open in $S_{\cdot\cdot}$

Furthermore H(u) is locally Euclidean and hence a Lie group.

Corollary 1: If S is a clan having a Euclidean neighbourhood of the identity then S is a Lie group.

Proof:

By theorem 3 H(u) is open. H(u) is closed since S is compact, and hence H(u), must be all of S. Thus if S is a clan and S is an n-sphere, then S is a topological group, and hence n = 0.1 or 3.

In general a compact manifold which admits a continuous associative multiplication with identity must be a group.

Corollary 2: Let S be a clan and F a closed subset of S such that S-F is locally Euclidean.

Then either S is a group or $H(u) \subset F$.

Proof:

Let $h \in H(u)$ and $h \notin F$. Then h has a Euclidean neighbourhood V. Since h^{-1} V is a Euclidean neighbourhood of u, it follows from corollary 1 that S is a group.

In case S is a subset of Euclidean space, then it follows from corollary 2 that $H(u) \subset$ boundary of S or S a top.group. If S contains interior points, then it cannot be a group and we have $H(u) \subset Bd(S)$.

<u>Definition 2:</u> A subset C of a space X is a C-set provided that $C \neq X$ and if M is a continuum with $C \cap M \neq \emptyset$ then $M \subset C$ or $C \subset M$. It can easely be shown that if C is a C- set of a compact connected Hausd. Space, then the interior of C is empty and C is connected.

For let x be an interior point of C, then there is an open set V with $x \in V \subset \overline{V} \subset C$.

Now let y \in X-C. Then the component M of y in X-V has a nonempty intersection with the boundary of X-V \subset \overline{V} .

Hence M is a continuum with MnC \neq Ø and C $\not\in$ M, M $\not\in$ C.

Theorem 4: (Gleason).

Let G be a compact Lie group which acts on a completely regular space X. Let p ϵ X such that g(p) \neq p unless g is the identity; g ϵ G.

Then there exists a closed neighbourhood N of p and a closed subset C of N, such that the orbit of every point of N has exactly one point in common with C.

Proof: See Gleason Pr A.M.S. 1 1950.

<u>Lemma 5:</u> Let G be a compact group and let U be an open neighbourhood of the identity.

Then U contains an invariant subgroup H of G such that G/H is a Lie group.

Proof: See Montgomery Zippin: Topological transformation groups.

Theorem 5: Let S be a clan, S no group G a compact invariant subgroup of H(u) = H, such that H/G is a Lie group.

Then S contains a continuum M such that M meets H and the complement of H, and such that $u \in M \cap H \subseteq G$.

Proof:

We can consider H as transformation group acting on S. Let H' = H/G and S' the space of orbits of G. Then H' is a compact Lie group acting on S'.

By theorem 4 there exists a closed neighbourhood N of $u^n = \hat{u} \cdot G$ and a closed set C \subset N such that n H' \cap C is a single point for each $n \in$ N.

Now let S 11 be the space of orbits under H.

Then we have the following canonical mappings $\alpha: \: S \to S^{\, \text{!`}}$,

 $\beta \ : \ S^{\, !} \to S^{\, !} \ / \ : \ S \to S^{\, !} \ , \ \ \text{with} \ / = \alpha . \ \beta \ .$

Since α and γ are open maps, β is also open.

Let N^O be the interior of N then βN^O is open and $\beta(u') \in \beta(N^O)$.

Let P be the component of β (N) which contains β (u).

Then P meets the boundary of $oldsymbol{eta}(exttt{N})$ and hence P is non-degenerate.

Now let $\beta^* = \beta \mid C$.

Then since n H'aC is a single point for each n \in N it follows that β^* is a homeomorphism between C and N β .

 $\beta^{*-1}(P)$ is a continuum which meets H' only at CoH', and hence $\beta^{*-1}(P)$ also meets the complement of H'.

Now let K be a component of $\alpha^{-1} \beta^{*-1}(P)$.

Since α is an open mapping we have $\alpha(K) = \beta^{*-1}(P)$.

Hence K is a continuum which meets H and the complement of H and KnHc $\alpha^{-1}(c)$, where $c=C\cap M$.

Let h & K \(A H \), then K \(A H \) c hG.

Suppose now $M=h^{-1}K$, then us MoH and MoHsG and if ksK, k\$\notin H\$, then $h^{-1}k$ \$\notin M\$, h\$\displain K\$\notin H\$, since S-H is an ideal of S. q.e.d.

Theorem 6: Let S be a clan which is no group.

Then the identity u of S belongs to no non-trivial C-set.

Proof:

Let $u \in C$, with C = C - set. We first prove that $C \subset H(u)$.

If $x \in C$, then since xS is a continuum which meets C, we have $C \subset xS$ or $xS \subset C$.

If $u \in xS$, then x has an inverse and is thus included in H(u). Now let $u \notin xS$, then $xS \subset C$; $xS \neq C$, and there is an open set V with $xS \subset V$; $C \setminus V \neq \emptyset$. Since $xK \subset K$ we have $K \cap C \neq \emptyset$.

If $u \in K$ then S is a group, hence $u \notin K \Rightarrow K \subset C$.

We can find now an open set W with $x \in W$ WS $\in V$.

Since C contains no interior points there exists a $y \in W \setminus C$ with $y \le C \setminus V$.

Clearly yS is a continuum which meets both C and S\C and C \not yS a contradiction.

Hence $u \in xS$ and thus $x \in H(u) \Rightarrow C \in H(u)$.

Now let U be a neighbourhood of u such that $C \not\subset U$.

Then by lemma 5 there is a subgroup $G \subset U$ such that H/G is a Lie group and $C \not= G$.

Theorem 5 implies that we can find a continuum M such that $u \in M \cap H = G$ and such that M meets the complement of H.

Hence MnC $\neq \emptyset$ and since CcH M meets the complement of C. \Rightarrow CcM.

Since MnHcG and C \neq G \Longrightarrow C \neq M a contradiction. q.e.d.

Example: Let
$$A = \{(x,y) \mid y = \sin \frac{1}{x} \mid 0 < x \le 1\}$$

 $B = \{(2-x,y) \mid (x,y) \in A\}$.
 $C = \{(0,y) \mid (2,y) \mid -1 \le y \le 1\}$.

and let $S = A \cup B \cup C$.

We will show that S does not admits the structure of a clan. For suppose that S is a clan.

Since S is not homogeneous, S cannot be a topological group and hence $S \neq H(u)$.

Then $S \setminus H(u) = J \neq \emptyset$ is the maximal proper ideal of S. Since J is open, dense and connected we have $A \cup B \subset J$ and hence $u \in C$. But since C is the union of two C- sets, u cannot be in C.

<u>Lemma 6:</u> Let S be a clan and CaC-set of S. If g is an idempotent with $g \notin K$, then $g \notin C$.

Proof:

SW C U

Suppose g & C. Since gSg is a continuum we have C < gSg or gSg & C.

g is the identity of the clan gSg and gSg is not a group since g \notin K (Ch I. § 3 th.6). Hence theorem 6 implies that C \notin gSg. Now suppose gSg \subset C \Longrightarrow K \cap C \neq \emptyset and since g \in C \subset K \neq \emptyset . Let U and V be neighbourhoods of K with SK=K \subset U \subset \overline{U} \subset V.

while $g \notin V$. Since S is compact there is a neighbourhood W of K such that

 \overline{SW} is a continuum and hence $\overline{SW} \subset \mathbb{C}$.

Furthermore $W \in S\overline{W}$ and this would imply that C contains inner points; a contradiction.

Theorem 7: Let S be a clan and C a C-set of S, then C ⊆ K.

Proof:

From the proof of lemma 6 it follows that if $K \cap C \neq \emptyset$, then $C \subseteq K$.

Suppose now $C \cap K = \emptyset$ and let $x \in C$ and U a neighbourhood of x with $C \setminus U \neq \emptyset$.

Let e be a minimal member of the partial ordered set E with xe = x.

e exists since $E_x = \{e \mid e^2 = e \mid xe = x\} \neq \emptyset$ and compact. Furthermore $e \notin K$ since $x \notin K$.

Hence $H(e) \neq eSe$ and we can find a neighbourhood V of e such that $xV \in U$ and a continuum $M \in eSe$ such that $e \in M \in V$ and $M \cap \{eSe \setminus H(e)\} \neq \emptyset$.

Since $x \in xM$ we have $xM \in C$.

Let $m \in M \cap \{eSe \setminus H(e)\}$, then $C \subset xSm$.

This implies that x = xsm = xesem = xp with $p \in \{eSe \setminus H(e)\}$. since $\{eSe \setminus H(e)\}$ is an ideal of eSe.

Hence x = xf with $f = f^2 \epsilon \Gamma(p) \epsilon$ eSe, and thus ef=fe=f \Rightarrow f ϵ e. But since e is minimal we have $f = \epsilon$.

Furthermore pe = p = ep \Rightarrow pf = p = fp \Rightarrow p \in H(f) = H(e); a contradiction.

Theorem 8: If S is a clan and if K is a C-set, then K is a maximal subgroup of S.

Proof:

If S = K, then S is a group and the result follows.

If $S \neq K$, then K has no interior points since K is a C-set.

Let $\{a_{\lambda} | \lambda \in \lambda\}$ be a directed set of points of SNK with $a_{\lambda} \rightarrow e$ where $e = e^2 \in K$.

Since $K \cap a_{\lambda}S \neq \emptyset$ $K \cap Sa_{\lambda} \neq \emptyset$ and $a_{\lambda} \in a_{\lambda}S \cap Sa_{\lambda}$ we have $K \in a_{\lambda}S \cap Sa_{\lambda} \implies K \in eS \cap Se = eSe$.

Now $e \in K$ gives H(e) = eSe and thus K = H(e).

Theorem 9: If a clan is an indecomposable continuum it is a group.

Proof:

If S = K, then S is a group.

Suppose now $K \neq S$. Then there exists an open set V with $K \subset V \subset \overline{V} \neq S$. Let J_O (V) be the union of all ideals of Scontained in V, then $J_{\Omega}(V)$ is open and connected and

 $K \subset J_{O}(V) \subset J_{O}(\overline{V}) \neq S_{\underline{O}}$ Since $S = J_{O}(V) \cup S - J_{O}(V)$ and S is indecomposable we have $S-J_o(V)$ not connected.

Let $S-\overline{J_O(V)}=A\cup B$ And $B=\emptyset$ A,B open. Then we have $\overline{J_O(V)}\cup A$ connected and $\overline{J_O(V)}\cup B$ connected and hence S not indecomposable; @ contradiction.

§ 4. I-semigroups

Definition 1:

Let J = [a,b] denote a closed interval on the real line. If J is a mob such that a acts as a zero-element and b as an identity then J will be called an I-semigroup.

We will identify J usually with [0,1], so that 0x = x0 = 0 and 1x = x1 = x for all $x \in \Gamma$.

Example: $J_1 = [0,1]$ under the usual multiplication $J_2 = [\frac{1}{2},1]$ with multiplication defined by xoy = max $(\frac{1}{2},xy)$ where xy denotes the usual multiplication of real numbers.

 $J_3 = [0,1]$ with multiplication defined by xoy = min(x,y).

 ${\rm J_1}$ and ${\rm J_2}$ have just the two idempotents zero and identity, but in ${\rm J_3}$ every element is an idempotent.

Furthermore every non-idempotent element in J_2 is algebraically nil-potent i.e. for every $x \in J_2$ there exists an n such that x^n is equal to zero.

Lemma 1: If J is an I-semigroup, then xJ = Jx = [0,x] for all $x \in J$.

Proof:

Since xJ is connected and $0,x \in xJ$ we have $[0,x] \in xJ$ and by the same argument $Jx \supset [0,x]$.

 J_{o} ([0,x)) = J_{o} is open and connected and hence x $\varepsilon\,\overline{J}_{o}$ and \overline{J}_{o} an ideal of J.

Hence $Jx \in J\overline{J} \subset \overline{J} \subset [0,x]$ and $xJ \subset [0,x]$.

Thus xJ = Jx = [0, x].

<u>Corollary:</u> If J is an I-semigroup, then $x \le y$ and $w \le v \Rightarrow xw \le yv$.

<u>Proof:</u> Since $x \le y$ there is a z such that x = zy. Hence $xw = z(yw) \le yw$.

In the same way we can prove $yw \le yv \Rightarrow xw \le yv$.

Theorem 1: If J is an I-semigroup with just the two idempotents O and 1 and with no nilpotent elements, then J is isomorphic to J_4 .

<u>Proof:</u> We first show that if $xy = xz \neq 0$ then y = z. Assume y < z. Then by lemma 1 there is a w such that y = zw. Hence $xy = x(zw) = xyw \implies xy = (xy)w^n$ for every n > 0. Thus xy = (xy)e, with $e = e^2 \in \Gamma(w)$.

Since 1 $\notin \Gamma(w)$, we have $e = 0 \Rightarrow xy = 0$ a contradiction.

We now prove that if $x \neq 0$, then x has a unique square root. The function $f: J \rightarrow J$ defined by $f(x) = x^2$ is continuous and leaves 0 and 1 fixed. Hence f is a map of J onto J so that square roots exist for every element.

Assume $a^2 = b^2 \neq 0$ and let $a \le b$.

Then by lemma 1 $a^2 \le ab \le b^2$. Hence $ab = a^2 \Rightarrow b = a$.

This establishes that for $x \neq 0$, x has a unique square root and by induction that x has unique 2^n th roots.

Let x_n be the 2^n -th root of $x \neq 0$ and for $r = p/2^n$ define $x^r = x_n^p$.

Then it is easy to prove that $x^r.x^s=x^{r+s}$, where r,s are positive dyadic rationals.

Furthermore if r < s, then $x^r > x^s$. For by lemma 1 $x^r > x^s$, and if $x^r = x^s$, then $x^{r-s} = 1$. a contradiction.

This implies that $\lim x_n = 1$.

Since $x_n < x_{n+1}$ lim x_n exist. Assume lim $x_n - y \ne 1$. Then since $y \to 0$ there is an n_0 such that $y^{n_0} < x$. Hence $y < x_{n_0}$ a contradiction.

Now let D = $\left\{ \begin{array}{c} x^r \mid r \text{ a positive dyadic rational} \right\}$. Then D is a commutative submob of J and $\overline{D} = J$.

Assume $\overline{D} \neq J$. Then there is an open interval $P \subset J \setminus \overline{D}$.

P = (a,b) and $b \in \overline{D}$.

Now since $x_n \to 1$, $x_n b \to b$, and $x_n b \le b$ by lemma 1.

If $x_n b = b$, then $x_n = 1$ a contradiction.

Hence $x_n b < b$ and $x_n b \in P$ for n sufficiently large.

Since $b \in \overline{D}$ and $x_n \in \overline{D}$, we have $x_n b \in \overline{D}$ a contradiction And thus $\overline{D} = J$.

Now let g: $D \rightarrow J_1$ be defined by $g(x^r) = \frac{1}{2}r$.

g(D) is dense in J_1 and g is one- to one continuous and order preserving.

Hence g can be extended to an iseomorphism of ${\it J}$ onto ${\it J}_1$.

Theorem 2: If J is an I-semigroup with just the two idempotents O and 1 and with at least one nilpotent, then J is iseomorphic to J_1 .

Proof:

Let $d = \sup \{x \mid x^2 = 0\}$. Then $d \neq 0$. For let $y \neq 0$ be nilpotent, then $y^n = 0$, $y^{n-1} \neq 0$ for some n > 1.

Clearly $(y^{n-1})^2 = 0$. Hence $d > y^{n-1}$.

As shown in theorem 1, d has a unique 2^n th root, and if r and s are positive dyadic rationals, then $d^r < d^s$ if r > s and $d^s \neq 0$, and $d^r d^s = d^{r+s}$.

Now let $D = \{ d^r \mid r \text{ a positive dyadic rational } \}$. Then by the same type of argument used in the proof of theorem 1, $\overline{D} = J$.

We define g: D \rightarrow J₂ by g(d^r) = $(\sqrt{\frac{1}{2}})^r$. Then g is one to one and continuous and g(D) is dense in J₂.

Since g is order preserving it can be extended to an isecmorphism of J onto $J_{2^{\,\circ}}$

Theorem 3: Let J be an I-semigroup. Then E is closed and if e, $f \in E$, then e.f = min (e,f).

The complement of E is the union of disjoint intervals. Let P be the closure of one of these. Then P is iseomorphic to either J_1 or J_2 . Furthermore if $x \in P$, $y \notin P$ then $xy = \min(x,y)$.

Proof:

Let e, f ∈ E e < f. Then by lemma 1 e.e ≤ ef ⇒ e ≤ ef.

Since ef \leq e, we have e = ef.

Now let Q = [e,f].

Then for any $x,y \in [e,f]$ we have $e.e \le x.y \le f.f.$

Hence Q is a submob of J.

Furthermore if $e \le x$, then $e \ge ex \ge e$. $e = e \implies ex = e$.

In other words e acts as a zero for [e,1].

If $x \le f$, then by lemma $1 \times f$ and thus f = f.

f acts as an identity for [0,f].

So we have in particular P an I-semigroup with only two idempotents and hence P is iseomorphic either to J_{γ} or J_{2} .

If $x \in P$, $y \notin P$, $x \le y$ then there is an $e \in E$, with $x \le e \le y$.

Hence xy = (xe)y = x(ey) are = x.

It follows from theorem 3, that every I-semigroup is commutative.

Theorem 4: Let S be the closed interval [a,b]. If S is a mob such that a and b are idempotents and S contains no other idempotents, then S is abelian.

Proof:

Let $e \in E \cap k$. Then H(e) = eSe.

Since S has the fixed point property and H(e) is a retract of S, H(e) has the fixed point property and hence H(e) = e. Consequently every element of K is idempotent.

Since K is connected, K = a or K = b.

If K=a, then a is a zero for S and g an identity since gS=Sg=S.

Hence S is an I-semigroup and abelian.

Theorem 5:Let S be the closed interval [a,b]. If S is a clan such that both a and b are idempotents, then S is abelian if and only if S has a zero.

Proof:

Let S be commutative, then K is a group and by the same argument used in the proof of th. 4, the maximal subgroups in K are single elements, hence K consists of only one element, a zero.

Now let S have a zero. If either a or b is the zero element, then the other is obviously a unit and the result follows by theorem 3.

Now let a < 0 < b. Then S' = [a,0] is a submob of S.

For suppose there exists $x,y \in S^{\circ}$ with $xy \in (0,b]$.

Then since a acts as a unit on S° , we have $x,xy \in x [a,y]$.

Hence there is an $s^* \in [a,y]$ with $xs^* = 0$.

Since $0, s \approx s$, we have y = sq.

Hence $xy = xs^*q = 0q = 0$ a contradiction.

In the same way we can prove that S'' = [0,b] is a submob of S and both S' and S'' are commutative since they are I-semi-

groups. It also follows that the unit of S is either a or b.

Suppose b is the unit element. Then in the same way as above we can prove that $aS^{ij} = S^{ij}a = [0,a]$.

Hence if $x'' \in S''$ then ax'' = y''a = (y''a)a = a(x''a) = a(az'') = az'' = x''a.

Furthermore if $x' \in S'$ and $x'' \in S''$, then x'x'' = (x'a)x'' = x'(ax'') = (ax'')x' = (x''a)x' = x''x'.

Theorem 6: Let S be the closed interval [a,b]. If S is a mob such that a and b are idempotents, then S is abelian if and only if S has a zero and ab = ba.

Proof:

If S is commutative, S has a zero by the same argument as in theorem 5, and obviously ab = ba.

Now let S have a zero and let ab = ba.

Then again the result follows if either a or b is a zero.

If a < 0 < b, then S' = [a,0] and S'' = [0,b] are abelian submobs of S.

Suppose now $ab \in S'$, then bS' = baS' = abS' = [ab,0] by lemma 1.

Hence bS = Sb = [ab,b], and [ab,b] is an abelian submob by theorem 5.

To prove the theorem it suffices to show that if $x \in [0,ab]$ and $y \in [ab,b]$ then xy = yx.

Now $xy = (xa)(by) = (xab)y_a$ and $xab \in [ab_a0]$.

Hence (xab)y = y(xab) = y(xb) = (yb) xb = y(bxb) = ybbx = yx.